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Nowadays we are confronted with rapidly increasing number of documents. Maintaining an overview
seems to be impossible. Indexing this documents with search engines allows us to group similar docu-
ments (clustering) or find the documents we are interested in with a search query. This paper provides
an overview on what is involved when one wants to index digital text documents using the open source

search engine library Apache Lucene.

In the first part this paper will discuss the terms document and similarity in the given context. The second
part is about Apache Lucene and shows what tools Lucene provides in a more general perspective.
While as the third part have a more detailed look at the moving part involved to build a search index with

Lucene.

1 Introduction

The title of this writing contains two general words which | will clarify before we go into the details. In

this first chapter the terms document and similarity will be analyzed.

1.1 Documents

A document is as a piece of written, printed, or electronic matter that provides information or evidence

or that serves as an official record ("document”. Oxford Dictionaries 2013).

This definition gives us at least two clues. First, documents can exist in many different forms both analog
and digital and they contain information. The following list are a few examples of different document

kinds.

» Book

+ Online article

* Newspaper article
» Photography

* Letter

* Movie

Going further in describing documents we can find a whole bunch of attributes like title, author, type,



creation date or date of last change just to name a few. But when we need to decide if we want to read

a document, mostly we want to know what the content of a document is all about.

1.2 Similarity

Similarity is the state or fact of being similar while similar is referring to a resemblance in appearance,
character, or quantity, without being identical ("similar”. Oxford Dictionaries 2013; "similarity”. Oxford

Dictionaries 2013).

Soin order to describe the similarity of two objects, we need to agree on the aspects we want to compare.
The classic example in this context are geometric shapes. While all rectangles are similar they do not

necessarily have the same size.

1.3 Document similarity

In order to bring the term document and similarity together we need to agree on a set of attributes which

then can be used to compare documents.

But how can we compare those attributes? Having a closer look on those attributes we can see that
they have a certain set of characteristics and we can use this characteristics to group them together and

at the end we have a few types that we can compare in their own way.

Probably the easiest ones are the numerical values and as special case, date values. One of those

values can be greater than, less than or equal than another or they can be within a certain range.

Another type is what we can refer to as an entity. Such an entity could be an Author or a category. So
we are dealing with a set of values that can contain a predefined list or a list that differs depending on

how many documents we compare.

This leaves us with the last type that is the content itself. Assuming we are dealing with textual docu-
ments, comparing the length of the content does not help us any further. We need to find a way how to

describe this content in a way that will make it comparable.

For that librarians uses fixed dictionaries of terms and assign one or several of those keywords to a
document depending on its content. Those keywords are maintained in a index for easy look up. This

once again have the characteristics of list of entities which we are able to compare.



2 Apache Lucene

In order to compare a huge amount of documents we need an index where we can look up documents
by certain keywords. In the past it was the job of librarians to maintain such an index by hand. Doing
this by hand is a tedious and error prone process and when dealing with several hundred thousands of

documents one might want to have this automated. This is where Apache Lucene comes in.

But what is Apache Lucene? Lucene is a library written in Java that allows the programmer to build and
maintain an index of documents and allows to query this index to find those documents one is interested

in. It also allows to build clusters, which is the process of grouping similar documents.
In the following | will look at how Lucene handles index building and searching.

Apache Lucene is only capable of dealing with plain text and thus does not support parsing of documents.
Depending on the format of the documents that should be indexed some preparation work needs to be

done before Lucene can do its magic. For more details see Section 3.1.

2.1 Building an index

Like librarians, Lucene stores a list of keywords for each indexed documents. But instead of using a fixed
vocabulary, Lucene extracts this keywords out of the documents text. This process is called tokenization.
The challenge here is to filter out rubbish and only keep what really matters for the given document. In

order to do so Lucene allow to apply filters both before and after the tokenization.

Lucene brings along a whole bunch of analyzers both optimized for a specific language or make use of
a specific tokenization algorithm. Those analyzers are build with general purpose in mind, so one may
want to bring in optimizations specific to the given documents. Section 3.2 will have a closer look at the

tokenization techniques.

2.2 Index persistence

Once we know the keywords of a document we need to store this information for later usage. In Lucene
terminology this is called a Directory. This is an abstract concept allowing Lucene to make no assumption
on how the index actually is stored. Lucene brings along an implementation for storing the index in the

memory (RAMDirectory) which is great for speed but only on a small amount of data or at the file system



(FSDirectory) which is not that fast but can handle more date than the other. If neither of those does fit

ones need, a custom Directory implementation can be written.

2.3 Searching in index

In order to find documents that match our informational need, Lucene uses a Query object. This query
object can be constructed by a programmer in code or a query builder can be used to parse search

phrase like one would enter in a search field.

The terms inside of a search query are applied with the same analyzing concepts as described in 2.1.
The documentation of Lucene states that it is a good start to use the same configuration yet this might

not apply in all cases and different analyzers may be used.

Just a short example: Given we had indexing documents that uses the Mediawiki syntax for formating.
The analyzer for indexing probably contains a filter to deal with this noise that is introduced by this
formatting syntax. On the other side, queries are build by using a query builder and we can expect that
the user does not enter any formatting characters. So the analyzer for the search query does not need

to deal with this formatting and therefore does not contain this filter.

2.4 Lucenes understanding of a Document

For Lucene a document is a simple object that have an undefined number of fields. Each field can have a
specific data type that controls the behaviour of the analyzer and allows for different search approaches
as we have seen in section 1.3. It also can be marked as storable or not. A storable field will be persisted

in the index and therefore be available on retrieval otherwise it will only be part of the keywords.

Determining which part of the document will end up in which field is not covered by Lucene. This is part

of the document parsing process and is explained further in section 3.1.

3 In detail

3.1 Parsing: Extracting content from documents

For Apache Lucene can only deal with plain text, we need to somehow extract it content from the doc-

ument which might contain also formating and oder non textual elements. We also might want to have



document attributes indexed in their own fields so we need to extract them too allowing us to search by
them separately. This process is called information extraction which is the process of filling the fields

and records of a database from unstructured or loosely formatted text (McCallum, 2005).

There are numerous of different document formats out there. An implementation of the techniques
described in the following will look different depending on the formats the documents have we want to

extract information form.

Depending on the diversity of the document collection and the degree of structuring we need to take

more or less effort in order to extract what ever information we are interested in.

Given a online article that makes use of Hyper Text Markup Language 5 (HTML5) in combination with
Resource Description Framework (RDF) we can consider ourself lucky. The same holds true for offline
documents like Portable Document Format (PDF) or the file formats from word processors like Word or
OpenOffice if and only if the meta data fields are set. But in most of the cases we are confronted with
documents that does not provide any structured information and we are challenged with the need of

parsing native language.

If our document collection does have a homogeneous structure we will get pretty good results using
Regular Expression (RegEx). The more diversity and subtlety in language we are facing, the more

sophisticated methods we will need.

The simple approach with RegEx and be improved by using rules which itself can make use of state

machines.

One can imaging that this approach can easily get out of hand. This is because the structure of our
document collection tends to change often or we do have so many rules which are interlinked with each

other that this collection of rules will not be maintainable any more.

This leads us to a techniques called Native language Processing (NLP) as they are described in Merlo

et al. (2006).

3.2 Analyzing: Tokenization and Filtering

Tokenization refer to the process of splitting up a text in to small pieces (terms) which then will be used
to match search query and documents against each other. The most common techniques in this area

are explained in the following.



3.2.1 Stemming

In native language one term can appear in different form e.g. singular and plural. Stemming uses an
algorithmic approach to reduce such words to their stem. Stemming is highly language specific and
needs to be fine tuned. Lucene has implementations of the Porter, Hunspell and Snowflake stemmer.
Each of the language specific analyzers provided by Lucene make use of language specific stemming.

An overview on stemming and stemming algorithms is given in Smirnov (2008).

3.2.2 Stop words filtering

Stop words are small words that appears often inside a text and therefore does not have any document
specific relevance. Filtering out those words will lead to a term list that contains proportionally more
relevant terms. Depending on the language other words should be removed got achieve good results.
If a document collection belongs to a common domain improvements can be made by using a domain

specific list of stop words.

Apache Lucene contains a list of stop words withing each of its language specific analyzer. While this

lists are relatively short (below hundred), it is highly recommended to apply custom stop word lists.

Basics on stop words can be found in Manning, Raghaban, and Schiitze (2009, p. 27) while Dolamic

and Savoy (2009) shows in which extend stop words can improve document retrieval.

3.2.3 Synonym injection

In some occasions a subject does not have any clear naming. So it may whelp to add synonyms of a
term so we will get a match for every possible naming. Lucene provides a filter allowing to do exactly
this but there is no default implementation of it. This technique is mentioned in Cutting, Pedersen, and

Halvorsen (1991, p. 5).

3.2.4 Normalization

Humans are an individualistic species and tend to do the same thing differently. This provides us with a
divers list of how times and dates are written as well as differences in word casings and orders of names
and first names. The list is not final. Normalization has the aim to bring this diversity to a unified form

(McCallum, 2005, p. 50).



The default implementation of Apache Lucenes analyzer applies normalization with a lower cases filter

that converts everything to lower case.

3.3 Similarity Measures

In order to compute the similarity of documents we need some mathematical expression or an algorithm
the computer can work with. This is called a similarity or distance measure witch maps down the similarity

or difference to one single numeric value.
Huang (2008) defines four criteria such a measure must comply with.
Let x and y be any two objects in a set and d(, y) be the distance between x and y.

1. The distance between any two points must be non- negative, that is, d(x, y)z().

2. The distance between two objects must be zero if and only if the two objects are identical, that is,
d(x,y) = 0ifand only if z = y.

3. Distance must be symmetric, that is, distance from x to y is the same as the distance from y to
x,ie. d(z,y) = d(y, x).

4. The measure must satisfy the triangle inequality, which is d(z, z)<d(z, y) + d(y, 2).

In the following | have a look at the measures that are part of the Lucene library.

3.3.1 Cosine Similarity

By default Lucene uses a similarity measure based on the so called vector space model as documented
in Class TFIDFSimilarity (2012). This model describes a document as a multi dimensional vector where
each occurring therm in the whole document collection represents one dimension. The cosine similarity

is then simply the angle between two of this document vectors (Huang, 2008).

The cosine similarity is combined with the term frequency—inverse document frequency (t fidf) weight-
ing factor. This factor reduces the relevance of common words so they do get dominant. Lucene uses

the following formula to calculate the ¢ fidf factor.

tf(tind)-idf(t) = £/ (1 + log(dflj_ 1)) M



Where f is the frequency the term appears in the given document, D is the number of documents and

df the frequency the term appears in all documents.

3.3.2 BM25

BM25 as described in Robertson (2010), is an implementation of the Probability Ranking Principle (PRP).
This principle assumes that each document has a binary relevance attribute stating if this document
is relevant or not. The measure itself is a probabilistic value of this binary relevance. Ordering the
document by their decreasing probability is assumed to give the best result the given document collection

can provide.

An explanation on how the BM25 measure was implemented in Lucene is given in Pérez-Iglesias et al.

(2009).

3.3.3 Divergence from randomness

Divergence from randomness (DFR) model can be considered a extension of the probabilistic approach.
DFR compares the probability of a term inside a document to the probability of this term inside a randomly
generated document. The relevance of the term for a document is then derived from the divergence of

the probabilities of the actual and the random document (Amati and Van Rijsbergen, 2002).

3.3.4 Language models

Language modeling takes advantage of recent research in speech and language processing. As of
Manning, Raghaban, and Schiitze (2009, p. 248), the resulting model is mathematically precise, con-
ceptually simple, computationally tractable, and intuitively appealing. The language model approach
has a similar characteristics as the  fidf but as Ponte and Croft (1998) shows, it outperforms vector

space based models.

Lucene has two implementation of two language based retrieval models as they are described in Zhai

and Lafferty (2004).



3.3.5 Comparison

Similarity measures are subject to often comparison against each other (Clinchant and Gaussier, 2010;
Huang, 2008; Robertson, 2010). Those comparisons show a clear tendency that the newer probability
and language based models performs better than the widely used vector space models. Yet the better
performance does not justify to switch over a well tuned and proven vector space based system (Man-
ning, Raghaban, and Schitze, 2009, p. 249f). But when implementing a new system they are clearly

worth a look.

4 Conclusions

While confronted with more and more documents we need tools to efficiently find information we are
interested in. Apache Lucene is such a tool. It provides us with a foundation to build a information

retrieval system for our documents.

While Lucene is capable of creating indexes our document collections and allow us to search this index
it does not help us with the task of information extraction and therefore can only be one building block

of an retrieval system.

In the process of building a search index, | consider the task of information extraction the most complex,
divers and important. In audio techniques we say crap in crap out. Keeping this in mind, investing a great
deal pf a projects resources in analyzing the document collection, fine tuning extraction rules, defining

stop word lists and so on will probably lead to more satisfying search results.



A List of Abbreviations

HTML5 Hyper Text Markup Language 5

RDF Resource Description Framework

PDF Portable Document Format

RegEx Regular Expression

NLP Native language Processing

PRP Probability Ranking Principle

tfidf term frequency-inverse document frequency

DFR Divergence from randomness
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